MAGE Faculty

Das, Siddhartha

Das, Siddhartha

Professor
Mechanical Engineering
Maryland Applied Graduate Engineering
3163 Glenn L. Martin Hall, Bldg. 088
Website(s):


EDUCATION

  • Ph.D., Indian Institute of Technology, Kharagpur Department of Mechanical Engineering, 2010
  • B.Tech. (Hons.), Indian Institute of Technology, Kharagpur Department of Mechanical Engineering, 2005

 

BACKGROUND

Dr. Siddhartha Das, FRSC, FInstP, FIET joined the Department of Mechanical Engineering, University of Maryland, College Park in March, 2014. He was promoted to Associate Professorship (with tenure) in August 2019. Dr. Das received his Ph.D. from the Indian Institute of Technology Kharagpur in 2010 in the area of theoretical microfluidics. Following his Ph.D., Dr. Das joined the Physics of Fluids Group in University of Twente, the Netherlands as a Postdoc and worked on surface nanobubbles, capillarity and soft wetting. After his stint in the Netherlands, Dr. Das went for his second Postdoc in the Department of Mechanical Engineering, University of Alberta, Canada. In Alberta, Dr. Das was honored with the Banting Postdoctoral Fellowship, the most prestigious postdoctoral fellowship of Canada.

Dr. Das' research interests span different areas of micro-nanoscale fluid mechanics and interactions of soft matter and complex interfaces with fluid mechanics. He is particularly interested in understanding issues such as the wetting of a soft solid, electrohydrodynamics past a soft interface, evaporation-mediated self-assembly of soft and rigid particles, mechanics of complex fluids during 3-D printing, interactions of liquid with 2-D materials like graphene and hexagonal Boron Nitride, micro-nanoscale water transport in trees, etc.

Dr. Das has authored 193 journal publications (as of August, 2024), including publications in such prestigious journals as Nature Materials, Proceedings of the National Academy of Sciences USA, Nature Communications, Advanced Materials, Energy and Environmental Sciences, Advanced Functional Materials, Advanced Energy Materials, Journal of the American Chemical Society, ACS Nano, Physical Review Letters, Nucleic Acids Research, ACS Applied Materials and Interfaces, Physical Review E, Physics of Fluids, Journal of Fluid Mechanics, Soft Matter, Journal of Chemical Physics, Matter, Journal of Physical Chemistry, Journal of Applied Physics, and Scientific Reports.

 

 

HONORS AND AWARDS

 

  • Included in the Stanford University list of world’s top 2% scientists based on the citations for the year 2022 [The rank is 63,032 (with self-citations) and 68,951 (without self-citations). The rank is 878 among 100,804 researchers in the sub-field of Chemical Physics (2023).
  • Recognized as Pioneering Investigator by ChemComm journal. Invited to submit an article for ChemComm Pionnering Investigators Collection 2023. (2023). Link to the CVs of the recipients: https://doi.org/10.1039/D4CC90213K
  • Invited to Contribute to the Special Issue “The Future of Lab-on-a-chip-Devices: An Early Career Scientists’ Perspective” of Frontiers in Sensors journal (2023).
  • Appointed as the Editorial Advisory Board Member of the journal Physics of Fluids (2023)
  • Included in the Stanford University list of world’s top 2% scientists based on the citations for the year 2021 [The rank is 67,534 (with self-citations) and 82,069 (without self-citations). The rank is 938 among 90,869 researchers in the sub-field of Chemical Physics.] (2022)
  • Recognized with six journal papers being identified by the Web of Science as ESI highly cited papers in the last 5 years (2022). 
  • Fellow, Institution of Engineering and Technology, U.K. (2022)
  • Recognized as a Soft Matter Emerging Investigator (this recognition is associated with the invitation to submit a paper for the  Emerging Investigator collections of the Soft Matter journal) (2022)
  • 2021 Junior Faculty Outstanding Research Award of the A. James Clark School of Engineering, University of Maryland (2021)
  • Included in the Stanford University list of world's top 2% scientists based on the citations for the year 2020. The rank is 46,179 overall and 777 in the sub-field of Chemical Physics (2021). 
  • VEBLEO Fellow (2021)
  • Selected for invitation to the 2021 Physical Chemistry Chemical Physics Emerging Investigators Themed Issue (2021)
  • Fellow, Institute of Physics, U.K. (2021) (News about this award: ENME WebsiteClark School Website)
  • Selected in UMD Research Leaders Fellows Program (2020) (News about this award: MarylandToday)
  • Honoree at University of Maryland’s Maryland Research Excellence Celebration (2020)
  • Selected for invitation to the inaugural Physical Chemistry Chemical Physics Emerging Investigators Themed Issue (2019)
  • Fellow, Royal Society of Chemistry (2019) (News about this award: ENME Website)
  • Honoree at University of Maryland’s Inaugural Maryland Research Excellence Celebration (2019)
  • Hind Rattan Award (Hindi Phrase when translated to English means “Jewel of India”) by NRI Welfare Society of India (Prof. Das has been selected to receive the award in a function in Bangalore, India on January 9, 2019 for his “Outstanding services, contributions and achievements” in his professional field. This award is one of the highest Indian diasporic awards granted annually to non-resident persons of Indian origin (NRIs)) (2019)
  • Indian Institute of Technology Kharagpur (IITKGP) Young Alumni Achiever Awards 2018 (These awards started by IITKGP in 2018 “recognize alumni age 40 or younger who have demonstrated emerging and unique innovation, creativity and success in his or her chosen career.”) (2018)
  • Selection as Editorial Board Member of Scientific Reports (a journal of the Nature Publishing Group) (2017)
  • Recognized as the Outstanding Reviewer for the journal International Journal of Non-linear Mechanics (2015)
  • Honoree in 8th Annual University-Wide Celebration of Scholarship and Research (University of Maryland, College Park) (2015)
  • Banting Postdoctoral Fellowship (2011-2012)
  • Emerald Engineering Outstanding Doctoral Research Awards
  • High Value Ph.D. Fellowship, Indian Institute of Technology, Kharagpur
  • National Doctoral Fellowship, All India Council of Technical Education (AICTE)
  • Indian National Academy of Engineering (INAE) Innovative Students Project Award (Undergraduate Level)
  • S.P. Sengupta Memorial Award, Indian Institute of Technology (IIT) Kharagpur, India

 

PROFESSIONAL MEMBERSHIPS

  • Editorial Board, Nature Scientific Reports, Fluids and Plasma Physics
  • Americal Physical Society (APS)
  • American Society for Mechanical Engineers
  • Royal Society of Chemistry, U.K.
  • Materials Research Society
  • Institute of Physics, U.K.

 

 

Nanofluidics and Interfacial Fluid Mechanics (Soft Capillarity and Wetting; Soft Electrokinetics; Micro-nanoscale transport; Drops and Bubbles; Active Flows)

Nanomaterials (Water-2-D Material Interactions; Nanocellulose)

Soft Materials (Polyelectrolyte Brushes; Lipid Bilayers; DNA)

Additive Manufacturing (Aerosol Jet Printing; Nanomaterial-based Inks for Printing; Modelling of 3-D Printing processes)


(# Indicates the Graduate Students of Dr. Das in UMD; $ Indicates the Undergraduate Students or Summer Interns supervised by Dr. Das in UMD; * Indicates corresponding authorship)

(Topic based demarcation: Polymer (P); Water-2D-Material (W2D); Flows in micro-nanoconfinements (FN); Lipid bilayer membranes (LBL); Transport in Wood (TW); Ions at Interfaces (INT); 3D Printing (3DP); Other Topics in Soft Matter (OSM))

 

 

Total number of publications in Nature-Indexed Journals (List is here): 30

Total number of publications in top 100 h5 journals (List is here): 30

Total number of publications in either Nature-Indexed or top h5 journal: 43 Journals

2024

Major topic wise summary of the number of papers: P (5); 3DP (2); FN (1); OSM (4)

193. S. Das* and G. R. Chandel#, “Streaming Electric Field, Electroviscous Effect, and Electrokinetic Liquid Flows in the Induced Pressure-Driven Transport of Active Liquids in Narrow Capillaries” Electrophoresis (Accepted for Publication) (Topic: OSM).

192. S. Das*, “Low Reynolds Number Flows of Active Liquids in Permeable, Long, and Thin Capillaries.” Physics of Fluids (Accepted for Publication) (Topic: OSM).

191. S. Das*, “Taylor Dispersion and Concentration Profiles of Solutes in the Capillary Transport of Active Liquids.” Langmuir (Accepted for Publication) (Topic: OSM).

190. R. Ishraaq# and S. Das*, “All-atom Molecular Dynamics Simulations of Polymer and Polyelectrolyte Brushes.” Chemical Communications 60, 6093-6129 (Invited article as a part of the “2024 Pioneering Investigators” collection; also identified as the “Chemical Communications HOT Articles 2024“) DOI: https://pubs.rsc.org/en/content/articlelanding/2024/cc/d4cc01557f (2024). (Topic: P) (Selected as one of the top 25% downloaded articles of the journal for June, 2024).

189. R. Ishraaq#, T. S. Akash#, and S. Das*, “Combined Machine Learning and Molecular Dynamics Reveal Two States of Hydration of a Single Functional Group of Cationic Polymeric Brushes.” Macromolecules57, 5300–5312. DOI: 10.1021/acs.macromol.3c02539 (Topic: P)

188. B. S. Chava# and S. Das*, “Strength, Number, and Kinetics of Hydrogen Bonds for Water Confined inside Boron Nitride Nanotubes.” Nanoscale Advances6, 3329-3337. DOI: 10.1039/D3NA00948C, (2024). (Topic: FN)

187. R. Ishraaq# and S. Das*, “All-atom Molecular Dynamics Simulations of Cationic Polyelectrolyte Brushes In the Presence of Halide Counterions.” Macromolecules 57, 3037–3046 (2024), DOI: 10.1021/acs.macromol.4c00244(Topic: P).

186. G. R. Chandel#, V. S. Sivasankar#, and S. Das*, “Evaporation of Active Drops: Dynamics of Punctured Drops and Particle Deposits of Ring Galaxy Patterns.” Physics Review Fluids 9, 033603 (2024), https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.9.033603 (Topic: OSM).

185. A. Bera#, V. S. Sivasankar#, and S. Das*, “Head-On Impact Driven Coalescence and Mixing of Drops of Different Polymeric Materials.” Physics of Fluids 36, 033109(2024) https://doi.org/10.1063/5.0191785 (Topic: 3DP).

184. S. K. Subudhi#, B. Zhao#, X. Wang, J. Ting#, I. Takeuchi, A. Dasgupta, and S. Das*, “Flexible and Twistable Free-Standing PDMS-based Soft Magnetic Films with Robust Magnetic Properties.” Flexible and Printed Electronics (2024), DOI: https://doi.org/10.1088/2058-8585/ad2dae (Topic: 3DP).

183. A. Bera#, T. S. Akash#, R. Ishraaq#, T. H. Pial#, and S. Das*, “Hydrogen Bonding Inside Anionic Polymeric Brush Layer: Machine Learning Driven Exploration of the Relative Roles of the Polymer Steric Effect, Charging, and Type of Screening Counterions.” Macromolecules (2024), DOI: 10.1021/acs.macromol.3c02127 (Topic: P).

182. T. S. Akash#, R. Ishraaq#, S. Das*, “”All-atom Molecular Dynamics Simulations of Uncharged Linear Polymer Bottlebrushes: Effect of the Brush Sizes and the Number of Side-Chain Monomers.” Langmuir (2024) (Accepted for Publication).

 

2023

Major topic wise summary of the number of papers: P (2); 3DP (5); FN (1); OSM (1)

181. R. Ishraaq#, T. S. Akash#, A. Bera#, and S. Das*, “Hydrophilic and Apolar Hydration in Densely Grafted Cationic Brushes and Counterions with Large Mobilities.” The Journal of Physical Chemistry B (2023) (DOI: 10.1021/acs.jpcb.3c07520) (Topic: P). 

180. S. K. Subudhi# and S. Das*, “Reliability of Lab-on-a-Chip Technologies for Wearable Electronics: A Perspective.” Frontiers in Sensors (Accepted for Publication) (2023), DOI: 10.3389/fsens.2023.1283402 (Topic: 3DP). (Invited Article for the Special Issue titled “The Future of Lab-on-a-chip-Devices: An Early Career Scientists’ Perspective)

179. B. Zhao#, A. A. Bharamgonda, E. Quinn, G. Stackhouse, J. Fleischer, M. Osterman, M. H. Azarian, D. R. Hines, S. Das, and A. Dasgupta, “Temperature-Humidity-Bias Testing and Life Prediction Modeling for Electrochemical Migration in Aerosol-jet Printed Circuits.” ASME Journal of Electronic Packaging(Accepted for Publication) (2023) DOI: 10.1115/1.4063541 (Topic: 3DP).

178. V. S. Sivasankar#, S A. Etha#, D. R. Hines, and S. Das*, “Coalescence of 3D Polymeric Drops in the Presence of In-Situ Photopolymerization.” Macromolecules 56, 6060–6077 (2023) DOI: 10.1021/acs.macromol.3c00946 (Topic: 3DP).

177. B. Zhao#, V. S. Sivasankar#, S. K. Subudhi#, S. Sinha#, S. Nikfarjam, T. Woehl, and S. Das*, “Three-Dimensional Deposits from Drying Particle-Laden Drops.” Langmuir 39, 9773–9784 (2023), DOI: 10.1021/acs.langmuir.3c00831 (Topic: OSM).

176. S. A. Etha# and S. Das*, “Repeated Microphase Separation and Heating-Free Distillation-Like Behavior of Miscible Binary Liquid Mixture Using Nanoconfined Grafted Polymer Layers.” The Journal of Physical Chemistry B 127, 5959-5966 (2023), DOI: 10.1021/acs.jpcb.3c01353 (Topic: P).

175. G. R. Chandel#, J. Sun, S. A. Etha#, B. Zhao#, V. S. Sivasankar#, S. Nikferjam, M. Wang, D. R. Hines, A. Dasgupta, T. J. Woehl, S. Das*, “Direct visualization of nanoparticle morphology in thermally sintered nanoparticle ink traces and the relationship among nanoparticle morphology, incomplete polymer removal, and trace conductivity.” Nanotechnology 24, 365705 (2023) DOI: 10.1088/1361-6528/acd9d2 (Topic: 3DP).

174. B. S. Chava#, G. R. Chandel#, and S. Das*, “Water-Structure-Specific Entropic Dominance in the Filling of Boron Nitride Nanotubes.” The Journal of Physical Chemistry C, DOI: 10.1021/acs.jpcc.3c01198 (2023).

173. B. Zhao#, V. S. Sivasankar#, S. K. Subudhi#, A. Dasgupta, and S. Das*, “Printed Carbon Nanotube-Based Humidity Sensors Deployable on Surfaces of Widely Varying Curvatures.” ACS Applied Nano Materials6, 1459-1474 (2023)(Topic: 3DP)

2022

Major topic wise summary of the number of papers: P (5); 3DP (3); FN (2); TW (1)

172. T. H. Pial# and S. Das*, “Specific Ion and Electric Field Controlled Diverse Ion Distributions and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.” The Journal of Physical Chemistry B126, 10543-10553 (2022) (Topic: P).

171. T. H. Pial# and S. Das*, “Machine Learning Enabled Quantification of the Hydrogen Bonds Inside the Polyelectrolyte Brush Layer Probed Using All-Atom Molecular Dynamics Simulations.” Soft Matter18, 89458951 (2022) (Topic: P).

170. Q. Dong, X. Zhang, J. Qian, S. He, Y. Mao, A. H. Brozena, Y. Zhang, T. P. Pollard, O. A. Borodin, Y. Wang#, B. S. Chava#, S. Das, P. Zavalij, C. U. Segre, D. Zhu, L. Xu, Y. Liang, Y. Yao, R. M. Briber, T. Li, and L. Hu, “A Cellulose-Derived Supramolecule for Fast Ion Transport.” Science Advances8, eadd2031 (2022). 

169. V. S. Sivasankar#, D. R. Hines, and S. Das*, “Numerical Study of the Coalescence and Mixing of Drops of Different Polymeric Materials.” Langmuir38, 14084–14096 (2022) DOI: 10.1021/acs.langmuir.2c02029 (Topic: 3DP).

168. B. Zhao#, V. S. Sivasankar#, S. K. Subudhi#, S. Sinha, A. Dasgupta, and S. Das*, “Applications, Fluid Mechanics, and Colloidal Science of Carbon-Nanotube-based 3D Printable Inks.” Nanoscale14, 14858-14894 (2022) (Topic: 3DP).

168. B. Zhao#, V. S. Sivasankar#, S. K. Subudhi#, S. Sinha, A. Dasgupta, and S. Das*, “Applications, Fluid Mechanics, and Colloidal Science of Carbon-Nanotube-based 3D Printable Inks.” Nanoscale (2022) (Accepted for Publication) (Topic: 3DP).

167. S. A. Etha#, T. H. Pial#, and S. Das*, “Extensive Stable Physical Contacts Between a Nanoparticle and a Highly Repulsive Polymeric Layer.” The Journal of Physical Chemistry B126, 5715-5725 (2022) (Topic: P).

166. R. Ishraaq#, T. H. Pial#, and S. Das*, “Interplay of Local Heating, Nanoconfinement, and Tunable Liquid-Wall Interactions Drive Rapid Imbibition and Pronounced Mixing Between Two Immiscible Liquids.” The Journal of Physical Chemistry Letters13, 5137-5142 (2022) (Topic: FN).

165. V. S. Sivasankar#, Y. Wang#, R. Natu, D. Porter, L. Herbertson, B. Cavern, S. Guha*, and S. Das*, “Two-Phase Particle-Liquid Transport in Curved Microchannels: Effect of Particle Volume Fraction and Particle Size in Dean Flow.” Physics of Fluids34, 053304 (2022) (Topic: FN).

164. T. H. Pial#, M. Prajapati#, B. S. Chava#, H. S. Sachar#, and S. Das*, “Charge-Density-Specific Response of Grafted Polyelectrolytes to Electric Fields: Bending or Tilting?” Macromolecules55, 2413–2423 (2022) (Topic: P).

163. A. Dhamsania#, W. Mah#, A. Sivarajan#, J. Ting#, S. Chung#, E. Carlson#, A. Wang#, G. Lee#, B. Huynh#, A. Chen#, L. Mueller#, C. Kim#, S. K. Subudhi#, B. Zhao#, B. S. Chava#, and S. Das*, “Physically Soft Magnetic Films and Devices: Fabrication, Properties, Printability, and Applications.” Journal of Materials Chemistry C, DOI: 10.1039/D2TC00388K (2022) (Topic: 3DP).

162. V. S. Sivasankar#, M. N. Prajapati#, and S. Das*, “Analytical Solutions for Non-Ionic and Ionic Diffusioosmotic Transport at Soft and Porous Interfaces.” Physics of Fluids, 23, 022102 (2022) (Topic: P).

2021

Major topic wise summary of the number of papers: 3DP (4); P (8); W2D (1); TW (1)

161. B. S. Chava#, E. K. Thorn, and S. Das*, “Atomistic Explorations of Mechanisms Dictating the Shear Thinning Behavior and 3D Printability of Graphene Flake Infused Epoxy Inks.” Physical Chemistry Chemical Physics, DOI: 10.1039/D1CP02321G (2021) (Topic: P) (Invited Article; Published as a part of PCCP Emerging Investigator 2021 Issue).

160. V. S. Sivasankar#, S. A. Etha#, D. R. Hines, and S. Das*, “Coalescence of Microscopic Polymeric Drops: Effect of Drop Impact Velocities.” Langmuir, DOI: 10.1021/acs.langmuir.1c02337 (2021) (Topic: 3DP).

159. H. S. Sachar#, T. H. Pial#, V. S. Sivasankar#, S. Das*, “Simultaneous Energy Generation and Flow Enhancement (Electroslippage Effect) in Polyelectrolyte Brush Functionalized Nanochannels.” ACS Nano, DOI: 10.1021/acsnano.1c05056 (2021) (Topic: P).

158. D. R. Hines*, Y. Gu#, A. A. Martin, P. Li, J. Fleischer, A. Clough-Paez, G. Stackhouse, A. Dasgupta, and S. Das*, “Considerations of Aerosol-Jet Printing for the Fabrication of Printed Hybrid Electronic Circuits.” Additive Manufacturing43, 102325 (2021) (Topic: 3DP).

157. W. Kong, C. Chen, G. Chen, C. Wang, D. Liu, S. Das, G. Chen#, T. Li, J. Li, Y. Liu, Z. Li, B. C. Clifford, and L. Hu, “Wood Ionic Cable.” Small (2021) (Accepted for Publication).

156. H. S. Sachar#, B. S. Chava#, T. H. Pial#, and S. Das*, “All-Atom Molecular Dynamics Simulations of the Temperature Response of Densely Grafted Polyelectrolyte Brushes.” Macromolecules (2021) DOI: 10.1021/acs.macromol.1c00922 (Topic: P).

155. B. S. Chava#, Y. Wang#, and S. Das*, “Boron-Nitride-Nanotube-Salt-Water Hybrid: Towards Zero-Dimensional Liquid Water and Highly Trapped Immobile Single Anions Inside One-Dimensional Nanostructures.” The Journal of Physical Chemistry C (2021) DOI: 10.1021/acs.jpcc.1c01683 (Topic: W2D)

154. C. Yi#, D. Park, R. Fedderwitz, C. Ding, Chao; G-Q. Lu, J. Fleischer, P. Li, P. Kofinas, S. Das*, and D. Hines*, “Fully Printed Resonance-Free Broadband Conical Inductors Using Engineered Magnetic Inks.” Additive Manufacturing44, 102034 (2021) (Topic: 3DP)

153. T. H. Pial#, H. S. Sachar#, and S. Das*, “Quantification of Mono- and Multivalent Counterion-mediated Bridging in Polyelectrolyte Brushes.” Macromolecules54, 4154-4163 (2021) (Topic: P)

152. T. H. Pial#, H. S. Sachar#, P. R. Desai#, and S. Das*, “Overscreening, Coion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.” ACS Nano15, 6507–6516 (2021) (Topic: P). (media coverage: EurekalertPhys.orgSciencedaily, )

151. V. S. Sivasankar#, S. A. Etha#, H. S. Sachar#, and S. Das*, “Thermoosmotic Transport in Nanochannels Grafted with pH-responsive Polyelectrolyte Brushes Modelled Using Augmented Strong Stretching Theory.” Journal of Fluid Mechanics,917, A31 (2021) (Selected as the Front Cover Article of the 25 June, 2021 Issue of the journal)(Topic: P).

150. B. Zhao#, V. S. Sivasankar#, A. Dasgupta, and S. Das*, “Ultra-thin and Ultra-sensitive Printed Carbon-Nanotube-based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities.” ACS Applied Materials and Interfaces13, 10257-10270 (2021) (Topic: 3DP).

149. H. S. Sachar#, B. S. Chava#, T. H. Pila#, S. Das*, “Hydrogen Bonding and its Effect on the Orientational Dynamics of Water Molecules inside Polyelectrolyte Brush-Induced Soft and Active Nanoconfinement.” Macromolecules54, 2011-2021 (2021) (Topic: P).

148. S. A. Etha#, P. R. Desai#, H. S. Sachar#, and S. Das*, Wetting Dynamics on Solvophilic, Soft, Porous, and Responsive Surfaces. Macromolecules, DOI: 10.1021/acs.macromol.0c02234 (2020) (Topic: P).

2020

Major topic wise summary of the number of papers: 3DP (2); TW (2); W2D (4); LBL (3); P (6)

147. H. Jing#, Y. Wang#, P. R. Desai#, K. Ramamurthi, and S. Das*, “Lipid Flip-Flop and Desorption from Supported Lipid Bilayers is Independent of Curvature.” PLOS ONE 15, e0244460 (2020) (Topic: LBL).

146. B. S. Chava#, Y. Wang#, V. S. Sivasankar#, and S. Das*, “Water-free Localization of Anion at Anode for Small Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube.” Cell Reports Physical Sciences, 1, 100246 (2020) (Topic: W2D). (media coverage: eng.umd.eduenme.umd.edu)

145. P. R. Desai#, S. Brahmachari, J. F. Marko, S. Das*, and K. C. Neumann*, “Coarse-Grained Modelling of DNA Plectoneme Pinning in the Presence of Base-Pair Mismatches.” Nucleic Acids Research, DOI: 10.1093/nar/gkaa836 (2020) (Topic: P). (media coverage: eng.umd.eduenme.umd.edu)

144. H. S. Sachar#, T. H. Pial#, B. S. Chava#, and S. Das*, “All-atom Molecular Dynamics Simulations of Weak Polyionic Brushes: Influence of Charge Density on the Properties of Polyelectrolyte Chains, Brush-Supported Counterions, and Water Molecules.” Soft Matter16, 7808-7822 (2020) (Topic: P).

143. E. Wagemann#, S. Misra, S. Das, and S. K. Mitra, “Quantifying water friction in misaligned graphene channels under Ångström confinements.” ACS Applied Materials and Interfaces12, 35757–35764 (2020) (Topic: W2D).

142. V. S. Sivasankar#, S. A. Etha#, H. S. Sachar#, and S. Das*, “Theoretical study on the massively augmented electroosmotic water transport in polyelectrolyte brush functionalized nanoslits.” Physical Review E, 102, 013103 (2020) (Topic: P).

141. S. A. Etha#, V. S. Sivasankar#, H. S. Sachar#, and S. Das*, “Strong Stretching Theory for pH-Responsive Polyelectrolyte Brushes in Large Salt Concentrations.” Physical Chemistry Chemical Physics22, 13536-13553 (2020) (Topic: P).

140. H. Jing#, Y. Wang#, P. R. Desai#, K. Ramamurthi, and S. Das*, “Formation and Properties of Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed Through Molecular Dynamics Simulations.” Langmuir36, 5524–5533 (2020). (Topic: LBL)

139. V. S. Sivasankar#, S. A. Etha#, H. S. Sachar#, and S. Das*, “Ionic Diffusioosmotic Transport in Nanochannels Grafted with pH-responsive Polyelectrolyte Brushes Modelled Using Augmented Strong Stretching Theory.” Physics of Fluids32, 042003 (2020) (Topic: P)

138. E. Wagemann, Y. Wang#, S. Das, S. K. Mitra, “On the Wetting Translucency of Hexagonal Boron Nitride.” Physical Chemistry Chemical Physics, DOI: 10.1039/D0CP00200C (2020). (Topic: W2D)

137. H. S. Sachar#, T. H. Pial#, P. R. Desai#, S. A. Etha#, Y. Wang#, P. W. Chung, and S. Das*, “Densely Grafted Polyelectrolyte Brushes Trigger “Water-in-Salt” like Scenarios and Ultraconfinement Effect.” Matter, DOI: 10.1016/j.matt.2020.02.022. (Topic: P) (media coverage: UMDRIGHTNOWenme.umd.edu)

136. S. He, C. Chen, G. Chen#, J. Dai, J. Song, F. Jiang, H. Xie, Y. Yao, C. Jia, E. Hitz, B. Liu, F. Chen, A. Gong, S. Das, and L. Hu, “A High-Performance, Scalable Wood-based Filtration Device with a Reversed-Tree Design.” Chemistry of Materials32, 1887-1895 (2020). (Topic: TW)

135. S. A. Etha#, V. S. Sivasankar#, H. S. Sachar#, and S. Das*, “Coating for Preventing Non-Specific Adhesion Mediated Biofouling in Salty Systems: Effect of the Electrostatic and van der Waals Interactions.” Electrophoresis, DOI: 10.1002/elps.201900348. (Topic: LBL)

134. V. S. Sivasankar#, H. S. Sachar#, S. Sinha, D. R. Hines*, and S. Das*, “3D Printed Microdroplet Curing: Unravelling the Physics of On-spot Photopolymerization.” ACS Applied Polymer Materials2, 966-976 (2020). (Topic: 3DP)

133. E. Wagemann, Y. Wang#, S. Das, and S. K. Mitra, “Wettability of Nanostructured Hexagonal Boron Nitride Surfaces: Molecular Dynamics Insights on the Effect of Wetting Anisotropy.” Physical Chemistry Chemical Physics24, 2488-2497 (2020). (Topic: W2D)

132. W. Gan, C. Chen, Z. Wang, Y. Pei, W. Ping, S. Xiao, J. Dai, Y. Yao, S. He, B. Zhao#, S. Das, B. Yang, P. B. Sunderland, and L. Hu, “Fire-Resistant Structural Material Enabled by An Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating.” Advanced Functional Materials30, 1909196 (2020). (Topic: TW)

131. N. Dalal#, Y. Gu#, G. Chen#, D. R. Hines, A. Dasgupta, and S. Das, “Effects of Gas Flow Rates on Quality of Aerosol Jet Printed Traces with Nanoparticle Conducting Ink.” ASME Journal of Electronic Packaging142, 011012 (2020). (Topic: 3DP)

 

2019

Major topic wise summary of the number of papers: P (4); 3DP (4); LBL (3); TW (3); OSM (1), FN (1)

130. T. H. Pial#, Y. Wang#, and S. Das*, “Non-Monotonic Dependence of Fluid Dissipation on Fluid Density in Fluid-Coupled Nanoresonators.” Applied Physics Letters115, 251601 (2019). (Topic: FN)

129. B. Zhao#, Y. Wang#, S. Sinha#, C. Chen, D. Liu, A. Dasgupta, L. Hu, and S. Das*, “Shape-driven Arrest of Coffee Stain Effect Drives the Fabrication of Carbon-Nanotube-Graphene-Oxide Inks for Printing Embedded Structures and Temperature Sensors.” Nanoscale1123402–23415 (2019) (Topic: 3DP).

128. H. S. Sachar#, V. S. Sivasankar#, S. A. Etha#, G. Chen, and S. Das*, “Ionic Current in Nanochannels Grafted with pH-Responsive Polyelectrolyte Brushes Modelled Using Augmented Strong Stretching Theory.” Electrophoresis, DOI: 10.1002/elps.201900248 (2019). (Topic: P)

127. Y. Gu#, D. Park, S. Gonya, J. Jendrisak, S. Das*, and D. R. Hines*, “Direct-write Printed Broadband Inductors.” Additive Manufacturing30100843 (2019). (Topic: 3DP)

126. N. Dalal#, Y. Gu#,  D. R. Hines, A. Dasgupta, and S. Das*, “Cracks in the 3D-Printed Conductive Traces of Silver Nanoparticle Ink.” Journal of Micromechanics and Microengineering, 29, 097001 (2019). (Topic: 3DP)

125. H. S. Sachar#, V. S. Sivasankar#, and S. Das*, “Electrokinetic Energy Conversion in Nanochannels Grafted with pH-responsive Polyelectrolyte Brushes Modelled Using Augmented Strong Stretching Theory.” Soft Matter15, 5973-5986 (2019). (Topic: P)

124. P. R. Desai#, Y. Wang#, H. S. Sachar#, H. Jing#, S. Sinha#, and S. Das*, “Supersolvophobic Soft Wetting: Nanoscale Elastocapillarity, Adhesion, and Retention of a Drop Behaving as a Nanoparticle” Matter, DOI: 10.1016/j.matt.2019.07.001 (2019). (Topic: OSM) (media coverage: eng.umd.eduenme.umd.edu)

123. K. Jiang, F. Khan, J. Thomas, P. R. Desai#, A. Phani, S. Das*, and T. Thundat, “Thermomechanical Responses of Microfluidic Cantilever Capture DNA Melting and Properties of DNA Pre-melting States Using Picolitres of DNA Solution.” Applied Physics Letters, 114, 173703 (2019). (Topic: P)

122. S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, C. Jia, X. Chen, A. Gong, J. Liao, J. Li, Z. Ren, B. Yang, S. Das, L. Hu, “Nature-Inspired Salt Resistant Bimodal Porous Solar Evaporator for Efficient and Stable Water Desalination.” Energy and Environmental Science12, 1558-1567 (2019) (Topic: TW)

121. H. S. Sachar#, V. S. Sivasankar#, and S.Das*, “Electrostatics and Interactions of an Ionizable Silica Nanoparticle Approaching a PlasmaMembrane.” Langmuir35, 4171-4181 (2019). (Topic: LBL)

120. Y. Kuang, C. Chen, G. Chen#, Y. Pei, G. Pastel, C. Jia, J. Song, R. Mi, B. Yang, S. Das, L. Hu, “Bioinspired Solar-Heated Carbon Absorbent for Efficient Clean-Up of Highly Viscous Crude Oil.” Advanced Functional Materials29, 1900162 (2019). (Topic: TW)

119. T. Li, X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen#, J. Dai, Y. Yao, S. Das, R. Yang, R. Briber, L. Hu, “Cellulose Ionic Conductors with High Differential Thermal Voltage for Low-Grade Heat Harvesting.” Nature Materials18, 608-613 (2019) (Topic: TW) (media coverage: ScienceDailyEurekalertphys.orgnanowerkNanotechnology NowFree Press JournalBusiness Standard,R&DThe Indian ExpressEconomic TimesECN Magazineeng.umd.edu, Maryland Today)

118. H. Jing#, S. Sinha#, H. S. Sachar#, and S. Das*, “Interactions of Gold and Silica Nanoparticles with Plasma Membranes Get Distinguished by the van der Waals Forces: Implications for Drug Delivery, Imaging, and Theranostics.” Colloids and Surfaces B: Biointerfaces, 177, 433-439 (2019). (Topic: LBL)

117. H. Jing#, Y. Wang#, P. R. Desai#, K. S. Ramamurthi, and S. Das*, “Nanovesicles versus Nanoparticle-Supported Lipid Bilayers: Massive Differences in Bilayer Structures and in Diffusivities of Lipid Molecules and Nanoconfined Water.” Langmuir35, 2702-2708 (2019). (Topic: LBL)

116. H. S. Sachar#, V. S. Sivasankar#, and S.Das*, “Revisiting the Strong Stretching Theory for pH-Responsive Polyelectrolyte Brushes: Effects of Consideration of Excluded Volume Interactions and an Expanded Form of the Mass Action Law.” Soft Matter15, 559-574 (2019) (Selected as the Back Cover Article). (Topic: P) (media coverage: eng.umd.eduenme.umd.edu)

115. Y. Gu#, D. Park, D. Bowen, S. Das*, D. R. Hines*, “Direct Write Printed, Solid-Core Solenoid Inductors with Commercially Relevant Inductances.” Advanced Materials Technologies4, 1800312 (2019). (Topic: 3DP)

 

2018

Major topic wise summary of the number of papers: P (6); W2D (2); FN (1); LBL (4); TW (3); INT (1); 3DP (1); OSM (1)

114. C. Wang, S. Wang, G. Chen#, W. Kong, W. Ping, J. Dai, G. Pastel, H. Xie, S. He, S. Das, and L. Hu, “Flexible, Bio-Compatible Nanofluidic Sodium Ion Conductor.” Chemistry of Materials98, 7707-7713 (2018). (Topic: TW)

113. Y. Wang#, K. Ahuja#, S. Sinha#, P. R. Desai#, and S. Das*, “Water-Holey-Graphene Interactions: Route to Highly Enhanced Water-Accessible Graphene Surface Area.” ACS Applied Nano Materials1, 5907-5919 (2018). (Topic: W2D)

112. G. Chen#, J. Patwary#, H. S. Sachar#, and S. Das*, “Electrokinetics in nanochannels grafted with poly-zwitterionic brushes.” Microfluidics and Nanofluidics, 22, 122 (2018). (Topic: P)

111. Y. Wang#, S. Sinha#, P. R. Desai#, H. Jing#, and S. Das*, “Ion at air-water interface enhances capillary wave fluctuations: Energetics of ion adsorption.” Journal of the American Chemical Society140, 12853–12861 (2018). (Topic: INT) (media coverage: enme.umd.edu)

110. R. S. Maheedhara#, H. Jing#, H.  S. Sachar#, and S. Das*, “Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels.” Physical Chemistry Chemical Physics, 20, 24300-24316 (2018). (Topic: P)

109. P. R. Desai# and S. Das*, “Lubrication in polymer brush bilayers in weak interpenetration regime: Molecular dynamics simulations and scaling theories.” Physical Review E, 98, 022503 (2018). (Topic: P)

108. R. S. Maheedhara#, H. S. Sachar#, H. Jing#, and S. Das*, “Ionic Diffusoosmosis in Nanochannels Grafted with End-charged Polyelectrolyte Brushes.” The Journal of Physical Chemistry B122, 7450-7461 (2018). (Topic: P)

107. S. Karpitschka, S. Das, M. van Gorcum, H. Perrin, B. Andreotti, and J. H. Snoeijer, “Soft Wetting: Models based on energy dissipation or on force balance are equivalent.” Proceedings of the National Academy of Sciences, USA, DOI: 10.1073/pnas.1808870115  (2018). (Topic: OSM)

106. S. Sinha#, H. S. Sachar#, and S. Das*, “Electrostatically-motivated design of biomimetic nanoparticles: Promoting specific adhesion and preventing nonspecific adhesion simultaneously.” Applied Physics Letters, 112, 243702(1-5) (2018). (Topic: LBL)

105. Y. Wang#, S. Sinha#, K. Ahuja#, P. R. Desai#, J. Dai, L. Hu, and S. Das*, “Dynamics of a Water Nanodrop Through a Holey Graphene Matrix: Role of Surface Functionalization, Capillarity, and Applied Forcing.” The Journal of Physical Chemistry C, 122, 12243–12250 (2018). (Topic: W2D)

104. G. Chen#, H. S. Sachar#, and S. Das*, “Efficient Electrochemomechanical Energy Conversion in Nanochannels Grafted with End-charged Polyelectrolyte Brushes at Medium and High Salt Concentration.” Soft Matter, 14, 5246-5255 (2018). (Topic: P)

103. S. Sinha#, H. Jing#, H. S. Sachar#, S. Das*, “Surface charges promote non-specific nanoparticle adhesion to stiffer membranes.” Applied Physics Letters, 112, 163702(1-5) (2018).(media coverage: enme.umd.edu)(Topic: LBL)

102. G. Chen#, Y. Gu#, H. Tsang, D. R. Hines, and S. Das*, “The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing.” Advanced Engineering Materials, 201701084 (2018). (Selected as the Back Cover Article of the August 2018 issue of the journal). (Topic: 3DP)

101. H. Jing# and S. Das*, “Theory of diffusioosmosis in a charged nanochannel.” Physical Chemistry Chemical Physics, 20, 10204-10212 (2018). (Topic: FN)

100. P. R. Desai#, S. Sinha#, and S. Das*, “Polyelectrolyte Brush Bilayers in Weakly Interpenetration Regime: Scaling Theory and Molecular Dynamics Simulations.” Physical Review E, 97, 032503(1-8) (2018). (media coverage: eng.umd.edu; enme.umd.edu) (Topic: P)

99. T. Li, H. Liu, X. Zhao, G. Chen#, J. Dai, G. Pastel, C. Jia, C. Chen, S. Das, R. Yang, and L. Hu, “Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport”. Advanced Functional Materials, 28, 1707134 (2018). (Topic: TW)

98. S. Sinha#, H. S. Sachar#, and S. Das*, “Effect of plasma membrane semi-permeability in making the membrane electric double layer capacitances significant.” Langmuir34, 1760-1766 (2018). (Topic: LBL)

97. H. Jing# and S. Das*, “Electric Double Layer electrostatics of lipid-bilayer-encapsulated nanoparticles: Towards a better understanding of protocell electrostatics.” Electrophoresis, 39, 752-759 (2018). (Topic: LBL)

 

2017

Major topic wise summary of the number of papers: P (3); W2D (3); FN (0); LBL (3); TW (4); INT (0); 3DP (2); OSM (3)

96. S. Sinha#, H. Jing#, H. S. Sachar#, S. Das*, “Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions.” Applied Physics Letters, 111, 263702 (2017). (Topic: LBL)

95. H. Liu, C. Chen, G. Chen#, Y. Kuang, X. Zhao, J. Song, C. Jia, X. Xu, E. Hitz, H. Xie, S. Wang, F. Jiang, T. Li, Y. Li, A. Gong, R. Yang, S. Das, and L. Hu, “High-Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design.” Advanced Energy Materials (DOI: 10.1002/aenm.201701616) (2017). (Topic: TW)

94. C. Jia, Y. Li,  Z. Yang, G Chen#, Y. Yao, F. Jiang, Y. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, and L. Hu, “Rich Mesostructures Derived from Natural Woods toward Energy-water Nexus.” Joule, 1, 588-5999 (2017). (Topic: TW)

93. Y. Wang#, S. Sinha#, L. Hu, and S. Das*, “Interaction between Water Drop and Holey Graphene: Retarded Imbibition and Generation of Novel Water-Graphene Wetting States.” Physical Chemistry Chemical Physics, 19, 27421-27434 (2017). (Topic: W2D)

92. M. Zhu$, Y. Li$, G. Chen#$, Z. Yang, X. Luo, Y. Wang#, J. Dai, S. D. Lacey, C. Wang, C. Jia, J. Wan, Y. Yao, B. Yang, Z. Yu, S. Das*, L. Hu*, “Tree-Inspired Design for High-Efficiency Water Extraction.” Advanced Materials, DOI: 10.1002/adma.201704107 (2017). ($: Co-first authors). (media coverage: cemag.us,laboratoryequipment.com, ScienceDaily) (Topic: TW)

91. Y. Gu#, D. R. Hines*, V. Yun, M. Antoniak, and S. Das*, “Aerosol-Jet Printed Fillets for Well-Formed Electrical Connections Between Different Leveled Surfaces.” Advanced Materials Technologies2, 1700178 (2017). (Topic: 3DP)

90. A. Pandey, S. Karpitschka, L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer, “Dynamical Theory of the Inverted Cheerios Effect.” Soft Matter, 13, 6000-6010 (2017). (Topic: OSM)

89. S. Sinha#, H. Jing#, and S. Das*, “Positive zeta potential of a negatively-charged semi-permeable plasma membrane.” Applied Physics Letters111, 063702 (2017). (Topic: LBL)

88. Y. Gu#, D. Gutierrez, S. Das*, and D. Hines*, “Inkwells for On-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing.” Journal of Micromechanics and Microengineering, 27, 097001 (2017). (Topic: 3DP)

87. P. R. Desai#, S. Sinha#, and S. Das*, “Compression of polymer brushes in weak interpenetration regime: Scaling Theory and Molecular Dynamics Simulations.” Soft Matter13, 4159-4166 (2017). (Topic: P)

86. Y. Wang#, J. E. Andrews#, L. Hu, and S. Das*, “Drop Spreading on a Superhydrophobic Surface: Pinned Contact Line and Bending Liquid Surface.” Physical Chemistry Chemical Physics, 19, 14442-14452 (2017). (Topic: W2D)

85. J. E. Andrews#, Y. Wang#, S. Sinha#, P. W. Chung, and S. Das*, “Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures.” The Journal of Physical Chemistry C, 121, 10010-10017 (2017). (Topic: W2D)

84. F. Chen, A. Gong, M. Zhu, G. Chen#, S. Lacey, F. Feng, Y. Li, Y. Wang, J. Dai, Y. Yao, J. Song, B. Liu, K. Fu, S. Das, and L. Hu, “Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment.”, ACS Nano11, 4275-4282 (2017).  (media coverage: IndiaToday, Business Standard, India; phys.org; woodworkingnetwork.com; Business Recorder; Science Daily; News Wise; enme.umd.edu; eng.umd.edu) Youtube Video. (Topic: TW)

83. S. Sinha#, H. Jing#, and S. Das*, “Charge Inversion and External Salt Effect in Semi-Permeable Membrane Electrostatics.” Journal of Membrane Science533, 364-377 (2017). (Topic: LBL)

82. G. Chen# and S. Das*, “Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes.” The Journal of Physical Chemistry B, 121, 3130-3141 (2017). (Topic: P)

81. H. Jing#, S. Sinha#, and S. Das*, “Elasto-electro-capillarity: Drop equilibrium on a charged, elastic solid.” Soft Matter, 13, 554-566 (2017). (selected as the back cover article) (media coverage: enme.umd.edu; eng.umd.edu) (Topic: OSM)

80. G. Chen# and S. Das*, “Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.” Electrophoresis, 38, 720-729 (2017). (Topic: P)

79. Y. Wang, G. Sun, J. Dai, G. Chen#, J. Morgenstern, Y. Wang#, S. Kang, M. Zhu, S. Das, L. Cui, and L. Hu, “High-Performance, Low Tortuosity Wood Carbon Monolith Reactor.” Advanced Materials, 29, 1604257 (2017).(Topic: TW)

78. S. Sinha#, V. Padia#, K. I. Bae#, G. Chen#, and S. Das*, “Effect of electric double layer on electro-spreading dynamics of electrolyte drops” Colloids and Surfaces A: Physicochemical and Engineering Aspects514, 209-217 (2017). (Topic: OSM)

 

2016

Major topic wise summary of the number of papers: P (4); W2D (1); FN (1); LBL (0); TW (0); INT (0); 3DP (0); OSM (6)

77. M. Razi, S. Sinha#, P. R. Waghmare, S. Das*, and T. Thundat, “Effect of Steam-Assisted Gravity Drainage (SAGD) produced water properties on oil/water transient interfacial tension.” Energy and Fuels, 30, 10714-10720 (2016). (Topic: OSM)

76. H. Li#, G. Chen#, and S. Das*, “Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.” Colloids and Surfaces B: Biointerfaces147, 180-190 (2016). (Topic: P)

75. S. Sinha#, L. Myers#, and S. Das*, “Effect of solvent polarization on electroosmotic transport in a nanofluidic channel.” Microfluidics and Nanofluidics, 20, 119 (2016). (Topic: FN)

74. G. Chen# and S. Das*, “Anomalous shrinking-swelling of nano-confined end charged polyelectrolyte brushes: Interplay of confinement and electrostatic effects.” Journal of Physical Chemistry B, 120, 6848-6857 (2016). (Topic: P)

73. J. Andrews#, S. Sinha#, P. W. Chung, and S. Das*, “Wetting dynamics of a water nanodrop on graphene.” Physical Chemistry Chemical Physics, 18, 23482-23493 (2016). (Selected as the Inside Front Cover Article) (media coverage: enme.umd.edu) (Topic: W2D)

72. G. Chen#, H. Li#, and S. Das*, “Scaling relationships for spherical polymer brushes revisited.” Journal of Physical Chemistry B, 120, 5272-5277 (2016). (Topic: P)

71. S. Karpitschka, A. Pandey, L.A. Lubbers, J.H. Weijs, L. Botto, S. Das, B. Andreotti, and J.H. Snoeijer, “Inverted Cheerios effect: Liquid drops attract or repel by elasto-capillarity.” Proceedings of the National Academy of Sciences, USA, 113, 7403-7477 (2016) (media coverage: New York Times, Clarke School, phys.org, sciencedaily.com, utwente.nl, eurekalert.com, enme.umd.edu) youtube_movie (Topic: OSM)

70. Z. Liu, Y. Wang, K. Fu, Z. Wang, Y. Yao, J. Wan, J. Dai, S. Das*, and L. Hu, “Solvo-thermal microwave-powered two-dimensional materials exfoliation.” Chemical Communications, 52, 5757-5760 (2016). (Topic: OSM)

69. S. Sinha# and S. Das*, “Role of Shuttleworth effect in adhesion on elastic surfaces.” MRS Advances (DOI: 10.1557/adv.2016.218) (2016). (Topic: OSM)

68. Z. Liu, L. Zhang, R. Wang, S. Poyraz, J. Cook, M. Bozack, S. Das, X. Zhang, and L. Hu, “Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides.” Scientific Reports, 6, 22503(1-8) (2016). (media coverage: enme.umd.edu) (Topic: OSM)

67. S. Sinha#, K. I. Bae#, and S. Das*, “Electric Double Layer effects in water separation from water-in-oil emulsions.” Colloids and Surfaces A: Physicochemical and Engineering Aspects489, 216-222 (2016). (Topic: OSM)

66. J. Patwary#, G. Chen#, and S. Das*, “Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density.” Microfluidics and Nanofluidics  20, 37 (2016). (Topic: P)

 

2015

Major topic wise summary of the number of papers: P (7); W2D (0); FN (0); LBL (0); TW (0); INT (0); 3DP (0); OSM (6)

65. S. Sinha# and S. Das*, “Under-water adhesion of rigid spheres on soft, charged surfaces.” Journal of Applied Physics, 118, 195306 (2015). (Topic: OSM)

64. G. Chen# and S. Das*, “Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels.” Journal of Physical Chemistry B119, 12714-12726 (2015). (Topic: P)

63. J. Liu, R. Giakwad, A. Hande, S. Das, and T. Thundat, “Mapping and quantifying surface charges on clay nanoparticles.” Langmuir31, 10469-10476 (2015). (Topic: OSM)

62. S. Sinha#, K. A. Mahmoud, and S. Das*, “Conditions for spontaneous oil-water separation with oil-water separators.” RSC Advances5, 80184-80191 (2015). (Topic: OSM)

61. S. Das*, M. Banik, G. Chen#, S. Sinha#, and R. Mukherjee, “Polyelectrolyte brushes: Theory, modelling, synthesis, and applications.” Soft Matter, DOI: 10.1039/C5SM01962A (2015). (Topic: P)

60. M. Hassanpourfarda, Z. Nikakhtari, R. Ghosh, S. Das, T. Thundat, Y. Liu, and A. Kumar, “Bacterial floc mediated rapid streamer formation in creeping flows.” Scientific Reports 5, 13070(1-12) (2015). (media coverage: ualberta.ca) (Topic: OSM)

59. S. Karpitschka, S. Das, M. van Gorcum, H. Perrin, B. Andreotti and J.H. Snoeijer, “Droplets move over viscoelastic substrates by surfing a ridge.” Nature Communications 4, 7891(1-6) (2015). (media coverage: nanowerk.com; phys.org; enme.umd.edu; utwente.nl; (Topic: OSM)

58. J. Andrews# and S. Das*, “Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates.” RSC Advances, 5, 46873-46880 (2015). (Topic: P)

57. G. Chen# and S. Das*, “Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density.” Journal of Applied Physics, 117, 185304 (2015). (Topic: P)

56. K. McDaniel#, F. Valcius#, J. Andrews#, and S. Das*, “Electrostatic potential distribution of a soft spherical particle with a charged core and pH dependent charge density”. Colloids and Surfaces B: Biointerfaces, 127, 143 (2015) (Selected as cover article for March issue of the journal). (media coverage: enme.umd.edu;) (Topic: P)

55. G. Chen# and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization”, Journal of Colloid and Interface Science445, 357 (2015). (Topic: P)

54. R. Gaikwad, A. Hande, S. Das, S. K. Mitra, and T. Thundat, “Determination of charge on asphaltene nano-aggregates in air using electrostatic force microscopy”. Langmuir, 31, 679 (2015). (Topic: OSM)

53. G. Chen# and S. Das*, “Electrostatics of soft charged interfaces with pH-dependent charge density: Effect of consideration of appropriate hydrogen ion concentration distribution”. RSC Advances, 5, 4493 (2015). (Topic: P)

 

2014

52. S. Das and A. Kumar, “Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets”. Scientific Reports4, 7126 (2014). (media coverage: enme.umd.edu)

51. S. Das*, S. Chanda#, J. C. T. Eijkel, N. R. Tas, S. Chakraborty, and S. K. Mitra, “Filling of charged cylindrical capillaries”. Physical Review E, 90, 043011 (2014).

50. S. Das*, “Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 69 (2014).

49. S. Chanda#, S. Sinha, and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converter”, Soft Matter, 10, 7558 (2014).

48. L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer, “Drops on soft solids: Free energy and double transition of contact angles Journal of Fluid Mechanics 747, R1 (2014).

 

———— Publications Before Joining University of Maryland, College Park————

 

47. S. Das, T. Thundat, and S. K. Mitra, “Modeling of asphaltene transport and separation in presence of finite aggregation effects in combined electroosmotic-electrophoretic microchannel transport”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 446, 23 (2014).

46. S. Chanda# and S. Das*, “Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution”, Physical Review E 89, 012307 (2014).

45. M. Mehranfar, R. Gaikwad, S. Das, S. K. Mitra, and T. Thundat, “Effect of temperature on morphologies of evaporation-triggered Asphaltene nanoaggregates” Langmuir 30, 800 (2014).

 

2013

44. S. Das, A. Guha, and S. K. Mitra, “Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers”, Analytica Chimica Acta 808, 159 (2013).

43. S. Das* and S. K. Mitra, “Electric double-layer interactions in a wedge geometry: Change in contact angle for drops and bubbles”, Physical Review E 88, 033021 (2013).

42.  S. Das and S. K. Mitra, “Different regimes in vertical capillary filling”, Physical Review E 87, 063005 (2013).

41. P. R. Waghmare, S. Das, and S. K. Mitra, “Drop deposition on under-liquid low energy surfaces”, Soft Matter 9, 7437 (2013). (Selected as a Cover Article). (media coverage: phys.org; redorbit.com;, ualberta.ca;)

40. P. R. Waghmare, S. Das, and S. K. Mitra, “Under-water superoleophobic glass: Unexplored role of surfactant-rich solvent”, Scientific Reports 3, 1862 (2013). (media coverage: phys.orgredorbit.com)

39. S. Das, S. Chakraborty, and S. K. Mitra, “Contribution of interfacial electrostriction in surface tension”, Journal of Colloid and Interface Science 400, 130 (2013).

38. R. P. Misra, S. Das, and S. K. Mitra, “Electric Double Layer force between charged surfaces: Effect of solvent polarization”, The Journal of Chemical Physics 138, 114703 (2013).

37. S. Das, T. Thundat, and S. K. Mitra, “Analytical model for zeta potential of asphalting”, Fuel 108, 543 (2013).

 

2012

36. S. Das, P. R. Waghmare, S. K. Mitra, “Early regimes of capillary filling”, Physical Review E 86, 067301 (2012).

35. S. Das, S. K. Mitra, and S. Chakraborty, “Ring stains in the presence of electromagnetohydrodynamic interactions”, Physical Review E 86, 056317 (2012).

34. A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, “Contact Angles on a Soft Solid: From Young’s Law to Neumann’s Law”, Physical Review Letters 108, 094301 (2012).

33. S. Das, R. P. Misra, T. Thundat, S. Chakraborty, and S. K. Mitra,”Modeling of asphaltene transport and separation in presence of finite aggregation effects in pressure-driven microchannel flow”, Energy and Fuels 26, 5851 (2012).

32. S. Das, S. K. Mitra, and S. Chakraborty, “Wenzel and Cassie-Baxter states of an electrolytic drop on charged surfaces”, Physical Review E 86, 011603 (2012).

31. S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: Liquid droplet “Coffee Stain” effect”, RSC Advances 2, 8390 (2012).

30. S. Das, S. Chakraborty, and S. K. Mitra, “Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: Framework for combined magnetohydrodynamic and magnetophoretic particle transport”, Microfluidics and Nanofluidics, 13, 799 (2012).

29. S. Das, S. Chakraborty, and S. K. Mitra, “Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization”, Physical Review E 85, 051508 (2012).

28. S. Das, S. Chakraborty, and S. K. Mitra, “Ring stains in the presence of electrokinetic interactions”, Physical Review E, 85, 046311 (2012).

27. S. Das*, P. Dubsky, A. van den Berg, J. C. T. Eijkel, “Concentration polarization in translocation of DNA through nanopores and nanochannels”, Physical Review Letters 108, 138101 (2012).

26. A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, “Capillary pressure and contact line force on a soft solid”, Physical Review Letters 108, 094301 (2012)

25. S. Das*, “Electric-double-layer potential distribution in multiple layer immiscible electrolytes: Effect of finite ion sizes”, Physical Review E 85, 012502 (2012).

 

2011

24. B. Andreotii, A. Marchand, S. Das, and J. H. Snoeijer, “Elastocapillary instability under partial wetting conditions: Bending versus buckling”, Physical Review E 84, 061601 (2011).

23. S. Das*, “Effect of added salt on preformed surface nanobubbles: A scaling estimate”, Physical Review E 84, 036303 (2011).

22. S. Das* and S. Hardt, “Electric-Double-Layer potential distribution in multiple-layer immiscible electrolytes”, Physical Review E 84, 022502 (2011).

21. S. Das, A. Marchand, B. Andreotti and J. H. Snoeijer, “Elastic deformation due to tangential capillary forces”, Physics of Fluids 23, 072005 (2011).

20. S. Das and S. Chakraborty, “Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena”, Physical Review E 84, 012501 (2011).

19. S. Das*, “Effect of impurities in the description of surface nanobubbles: Role of non-idealities in the surface layer”, Physical Review E 83, 066315 (2011).

18. S. Das and S. Chakraborty, “Probing the solvation decay length for characterizing hydrophobicity-induced bead-bead attractive interactions in polymer chains”, Journal of Molecular Modeling 17, 1911 (2011).

 

2010

17. S. Das*, J. H. Snoeijer, and D. Lohse, “Effect of impurities in description of surface nanobubbles”, Physical Review E 82, 056310 (2010). (This paper has been selected for the November 15, 2010 issue of Virtual Journal of Nanoscale Science and Technology in the section “Surface and Interface Properties”)

16. S. Das and S. Chakraborty, “Effect of confinement on the collapsing mechanism of a flexible polymer chain”, The Journal of Chemical Physics 133, 174904 (2010). (This paper has been selected for the Novemeber 15, 2010 issue of Virtual Journal of Biological Physics Research in the section “Fundamental Polymer Statics/Dynamics”).

15. S. Das and S. Chakraborty, “Effect of conductivity variations within the Electric Double Layer on the streaming potential estimation in narrow fluidic confinements”, Langmuir 26, 11589 (2010).

14. S. Das and S. Chakraborty, “Transport of flexible molecules in narrow confinements”, International Journal of Micro-Nanoscale Transport Processes 1, 97 (2010) (Invited  Review).

13. S. Das and S. Chakraborty, “Augmented surface adsorption characteristics by employing patterned  microfluidic substrates in conjunction with transverse electric fields”, Microfluidics and Nanofluidics 8, 313 (2010).

 

2009

12. S. Das and S. Chakraborty, “Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions”, Langmuir 25, 9863 (2009).

11. T. Das, S. Das and S. Chakraborty, “Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows”, The Journal of Chemical Physics 130, 244904 (2009).

 

2008

10. S. Das and S. Chakraborty, “Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels”, Langmuir 24, 7704 (2008).

9. S. Chakraborty and S. Das, “Streaming field induced convective transport and its influence on the electroviscous effects in narrow fluidic confinements beyond the Debye Huckel limits”, Physical Review E 77, 037303 (2008).

8. R. Lambert, S. Das, M. Madou, S. Chakraborty and R. Rangel, “Simulation of a  moving mechanical actuator for fast biomolecular synthesis process”, International Journal of Heat and Mass Transfer 51, 4367 (2008).7. S. Das and S. Chakraborty, “Separation of charged macromolecules in nanochannels within the continuum regime: Effects of wall interactions and hydrodynamic confinements”, Electrophoresis 29, 1115 (2008).

 

2007

6. S. Das, K. Subramanian, and S. Chakraborty, “Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels”, Colloids and Surfaces B58, 203 (2007).

5. S. Das and S. Chakraborty, “Transverse electrodes for improved DNA hybridization in microchannels”, AIChE Journal, 53, 1086 (2007).

 

2006

4. S. Das and S. Chakraborty, “Augmentation of macromolecular adsorption rate through transverse electric fields generated across patterned walls of a microfluidic channel”, Journal of Applied Physics 99, 1 (2006). (This paper has been selected for the July 15, 2006 issue of Virtual Journal of Biological Physics Research in the section “Instrumentation Development).

3. S. Das and S. Chakraborty, “Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid”, Analytica Chimica Acta 559, 15 (2006).

2. S. Das, T. Das, and S. Chakraborty, “Analytical solutions for the rate of DNA hybridization in a microchannel in the presence of pressure-driven and electro-osmotic flows”, Sensors and Actuators B114, 957 (2006).

1. S. Das, T. Das and S. Chakraborty, “Modeling of coupled momentum, heat and solute Transport during DNA hybridization in a microchannel in presence of electro-osmotic effects and axial pressure gradients”, Microfluidics and Nanofluidics 2, 37 (2006).