

ENPM 701 – Autonomous Robotics: Spring 2026 Syllabus

Master of Engineering Program in Robotics

Lecture Details	Section 0101 & R001 Tuesdays 4:00 pm to 6:40 pm JMP 2217
Course Zoom	
Instructor	Steven E. Mitchell, Ph.D. Office: EGR 2128 Office Hours: Tuesdays in lecture hall and via Zoom lecture link Preferred Means of Contact: mitchels@umd.edu
Course Description	<p>This is a hand-on course exploring the principles of robotic autonomy. Students will explore the theoretical, algorithmic, and implementation aspects of autonomous robotic modeling and controls, perception, localization and SLAM, planning, and decision making. These techniques will be applied through completion of a semester-long hands-on project employing the course material, ground-based mobile robots, and Python. Each student is required to build and test their own robot this semester.</p> <p>Students will perform hands-on exercises in most lectures to gain a deeper understanding of how a selected set of these technologies can be applied to real-world robotic environments.</p>
Required Technology	Students will need a personal computer on which Python can be installed (installation details provided during first lecture) along with a Raspberry Pi and robotics kit (both available for purchase).
Textbook(s)	<p>There exists no single textbook that comprehensively covers the material included in this course. The following resources are optional and will augment the lecture materials:</p> <ul style="list-style-type: none">• Introduction to Autonomous Mobile Robots by Siegwart, 2011• Probabilistic Robotics by Thrun, 2005• Planning Algorithms by LaValle, 2006• Intro to Mechatronics and Measurement Systems, by Alciatore, 2012• Introduction to Sensors for Ranging and Imaging by Booker, 2009• Python Programming and Visualization for Scientists by DeCaria, 2016• Practical Python and OpenCV by Rosebrock, 2014• Raspberry Pi for Computer Vision by Rosebrock, 2019

Grading Policy

Course grades will be based on the following *approximate* grade weights:

Assignments & Exercises	80%
Final Project	20%

Assignments and exercises will be performed both in and outside class hours. Attendance and participation will be self-evaluated and considered with final grade decisions made by the professor.

NOTE: NO LATE HOMEWORK WILL BE ACCEPTED.

It is your responsibility to confirm the proper grades are recorded on ELMS for all graded work. You have **two weeks from the date graded work is returned to dispute a grade.**

Academic Integrity

By enrolling in this course, each student assumes full responsibility as a participant in UMCP's scholarly community in which everyone's academic work and behavior are held to the highest standards of honesty. For more information on the Code of Academic Integrity or the Student Honor Council, please visit <http://www.shc.umd.edu>.

Syllabus Note

This course syllabus is subject to change. The most recent version is available on the course website (ELMS). ***Please check regularly for updates.***

ENPM 701 – Autonomous Robotics: Spring 2026 Class Schedule

Master of Engineering Program in Robotics

Week	Dates	Topic / Event	Reading / Other
1	1/27	Course Introduction Introduction to Python Python & the Raspberry Pi Homework #0.1	Python Fundamentals sanitycheck.py Ground-up setup/config of Raspberry Pi Siegwart Chp. 1, 4 DeCaria Chp. 1-5, 7, 10
2	2/3	Perception Homework #1 due: data in Python & Bill of Materials confirmation	OpenCV Fundamentals Siegwart Chp. 4 Toth Chapter 1 IntroRemoteSensing.pdf
3	2/10	Perception Homework #2 due: confirm RPi up and running, cv2.videoWriter()	OpenCV Fundamentals GPIO Siegwart Chp. 4 IntroLidar.pdf VLP-16
4	2/17	Locomotion & Kinematics Homework #3 due: object tracking with RPi	Sonar & coding interface with distance sensor Lidar & Velodyne demo QR Codes Siegwart Chp. 2-3
5	2/24	Introduction to Course Project Locomotion & Kinematics Homework #4 due: arrow tracking & orientation with RPi	Assemble vehicle Overview of DC motors & H-bridge Teleoperated control of vehicle Siegwart Chp. 2-3
6	3/3	Locomotion & Kinematics Homework #5 due: complete assembly of ground vehicle, teleoperation	Assemble vehicle Open vs. closed-loop control Servo motors & Gripper Siegwart Chp. 2-3
7	3/10	Localization Homework #6 due: servo gripper functionality, localization basic theory	Motor encoders Repeatedly drive robot in user-defined straight line Siegwart Chp. 5
8	3/17	SPRING BREAK	
9	3/24	Localization Homework #7 due: motor encoder tracking, forward reverse left right	SMTP & IoT sending videos/data back to control station Map trajectory using Matplotlib Siegwart Chp. 5
10	3/31	Localization / Sensor Fusion Homework #8 due: IMU functionality	IMU sensor fusion Siegwart Chp. 5 BNO055 datasheet
11	4/7	Planning & Navigation Homework #9 due: sequence of moves, plot trajectory in Matplotlib	Auto-rotation using block tracking algorithm Autonomous object retrieval Siegwart Chp. 6
12	4/14	Grand Challenge Practice Homework #10 due: sequence of moves, plot trajectory in Matplotlib	
13	4/21	Grand Challenge Practice	
14	4/28	Grand Challenge Practice –must complete at least 1 practice run, for credit!	
15	5/5	Grand Challenge - Final Project Videos Due 11:59pm Friday 5/15 -	