

ENPM 701 – Autonomous Robotics: Spring 2025 Syllabus

Master of Engineering Program in Robotics

Lecture Details	Section 0101 Tuesdays 1:00 pm to 3:40 pm JMP 2216		
	Course Zoom: https://umd.zoom.us/j/97128970581		
Instructor	Steven E. Mitchell, Ph.D. Office: EGR 2128 Office Hours: Tuesdays in lecture hall and via Zoom lecture link <i>Preferred Means of Contact</i> : mitchels@umd.edu		
Teaching Assistant	TBD Office Hours: TBD		
Course Description	This is a hand-on course exploring the principles of robotic autonomy. Students will explore the theoretical, algorithmic, and implementation aspects of autonomous robotic modeling and controls, perception, localization and SLAM, planning, and decision making. These techniques will be applied through completion of a semester-long hands-on project employing the course material, ground-based mobile robots, and Python. Each student is required to build and test their own robot this semester. Students will perform hands-on exercises in most lectures to gain a deeper understanding of how a selected set of these technologies can be applied to real-world robotic environments.		
Required Technology	Students will need a personal computer on which Python can be installed (installation details provided during first lecture) along with a Raspberry Pi and robotics kit (both available for purchase).		
Textbook(s)	There exists no single textbook that comprehensively covers the material included in this course. The following resources are <i>optional</i> and will augment the lecture materials:		
	 Introduction to Autonomous Mobile Robots by Siegwart, 2011 Probabilistic Robotics by Thrun, 2005 Planning Algorithms by LaValle, 2006 Intro to Mechatronics and Measurement Systems, by Alciatore, 2012 Introduction to Sensors for Ranging and Imaging by Booker, 2009 Python Programming and Visualization for Scientists by DeCaria, 2016 Practical Python and OpenCV by Rosebrock, 2014 Baspherry Pi for Computer Vision by Bosebrock, 2019 		

• Raspberry Pi for Computer Vision by Rosebrock, 2019

Grading Policy	Course grades will be based on the following <i>approximate</i> grade weights:		
	Assignments & Exercises 80% Final Project 20%		
	Assignments and exercises will be performed both in and outside class hours. Attendance and participation will be self-evaluated and considered with final grade decisions made by the professor.		
	NOTE: NO LATE HOMEWORK WILL BE ACCEPTED.		
	It is your responsibility to confirm the proper grades are recorded on ELMS for all graded work. You have two weeks from the date graded work is returned to dispute a grade .		
Academic Integrity	By enrolling in this course, each student assumes full responsibility as a participant in UMCP's scholarly community in which everyone's academic work and behavior are held to the highest standards of honesty. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.shc.umd.edu.		
Syllabus Note	This course syllabus is subject to change. The most recent version is available on the course website (ELMS). <i>Please check regularly for updates</i> .		

ENPM 701 – Autonomous Robotics: Spring 2025 Class Schedule

Week	Dates	Topic / Event	Reading / Other	
1	1/28	Course Introduction Python Fundamentals Introduction to Python sanitycheck.py Python & the Raspberry Pi Homework #0.1	Siegwart Chp. 1, 4 DeCaria Chp. 1-5, 7, 10	
2	2/4	Introduction to Course Project Perception OpenCV Fundamentals via VNC QR codes Homework #1 due: data in Python & Bill of Materials confirmation	Siegwart Chp. 4 Toth Chapter 1 IntroRemoteSensing.pdf	
3	2/11	Perception Lidar & Velodyne demo GPIO Sonar & coding interface with distance sensor Homework #2 due: confirm RPi up and running, cv2.videoWriter()	Siegwart Chp. 4 IntroLidar.pdf VLP-16	
4	2/18	Locomotion & Kinematics Assemble vehicle Mount RPi camera Homework #3 due: object tracking with RPi	Siegwart Chp. 2-3	
5	2/25	Locomotion & Kinematics Assemble vehicle Overview of DC motors & H-bridge Teleoperated control of vehicle	Siegwart Chp. 2-3	
6	3/4	Locomotion & Kinematics Open vs. closed-loop control Servo motors & Gripper Homework #4 due: arrow tracking & orientation with RPi	Siegwart Chp. 2-3	
7	3/11	Localization Motor encoders Repeatedly drive robot in user-defined straight line Homework #5 due: complete assembly of ground vehicle, teleoperation	Siegwart Chp. 5	
8	3/18	SPRING BREAK		
9	3/25	Localization SMTP & IoT sending videos/data back to control station Map trajectory using Matplotlib Homework #6 due: servo gripper functionality, localization basic theory	Siegwart Chp. 5	
10	4/1	Localization / Sensor Fusion IMU sensor fusion Homework #7 due: motor encoder tracking, forward reverse left right	Siegwart Chp. 5 BNO055 datasheet	
11	4/8	Planning & Navigation Auto-rotation using block tracking algorithm Autonomous object retrieval Homework #8 due: IMU functionality	Siegwart Chp. 6	
12	4/15	Grand Challenge Practice Homework #9 due: sequence of moves, plot trajectory in Matplotlib		
13	4/22	Grand Challenge Practice		
14	4/29	Grand Challenge Practice –must complete at least 1 practice run, for credit!		
15	5/6	Grand Challenge Practice		
16	5/13	Grand Challenge - Final Project Videos Due 11:59pm Friday 5/16 -		

Master of Engineering Program in Robotics